On the last 10 billion years of stellar mass growth in star-forming galaxies

Sam Leitner (University of Chicago) Advisor: Andrey Kravtsov Santa Cruz Galaxy Workshop, August 2011

A persistent SFR main sequence Small scatter in SFR at M∗: •z≈0 in SDSS (e.g. Brinchmann+04) •z≈0 in local dwarfs (Lee+11) •z≈2 in M∗ >10¹⁰ (e.g. Rhodighiero+11)

A persistent SFR main sequence Small scatter in SFR at M*: • $z\approx0$ in SDSS (e.g. Brinchmann+04) • $z\approx0$ in local dwarfs (Lee+11) • $z\approx2$ in M* >10¹⁰ (e.g. Rhodighiero+11)

Observations: normalization of SFR-M_{*}

Salim et al. 2007; Noeske et al. 2007b; Elbaz et al. 2007; Pannella et al. 2009; Daddi et al. 2007; Dunne et al. 2009; Oliver et al. 2010; Rodighiero et al. 2010a Karim et al. 2011;

Observations: normalization of SFR-M*

Salim et al. 2007; Noeske et al. 2007b; Elbaz et al. 2007; Pannella et al. 2009; Daddi et al. 2007; Dunne et al. 2009; Oliver et al. 2010; Rodighiero et al. 2010a Karim et al. 2011;

Observations: slope SFR/M_{*}~M_{*}^β

Observations: slope SFR/M_{*}~M_{*}^β

Typical stellar mass growth from main sequence integration

stellar mass growth

Quantifying the late formation of star forming galaxies

 $z_{15\%}$: M(z)=0.15M_{*}(z=0)

Quantifying the late formation of star forming galaxies

 $z_{15\%}$: M(z)=0.15M_{*}(z=0)

Quantifying the late formation of star forming galaxies

Stellar mass growth from spectra

Averaged SED-based SFHs of ~50,000 SDSS star-forming galaxies of $10^{10.5}$ - $10^{11}M_{\odot}$ from the VESPA Database

Mimicking age uncertainty

SSPs with typical SDSS signal-to noise are not distinguished over <0.5dex:

Tests show little bias, but resolution~1dex for non-SSPs with unknown metallicity

Consistency between SEDs and the main sequence

A transition at low masses?

A transition at low masses? An SED/CMD discrepancy?

Summary and Conclusions

- The main sequence of star formation can be integrated to calculate stellar mass growth in star forming galaxies back to **10-20%** of current stellar masses.
- Less than 15% of stellar mass (median bulge mass) is in place in star forming galaxies of about M_{*}=1-5x10¹⁰ SFGs at z>2.
- SED-based star formation histories are consistent with SFR-M_{*} and its evolution after accounting for age uncertainties.
- Local CMD-analyzed dwarfs formed early(?) compared to SED and main sequence extrapolations.
- Details: merging, ρ_{SFR}≠Δρ_{*}, effect of scatter in SFR-M_{*}, other high S/N SED- and CMD-based disk observations.

arXiv:1108.0938

Merging and Scatter

The effect of age resolution on mass growth in SED-based SFHs

